5.2 Extension: Graphing Proportional Relationships

Two key features of graphs of proportional relationships

- Graphs must show a \qquad
- The line of the graph has to go through the \qquad

EXAMPLE 1 Determining Whether Two Quantities Are Proportional Use a graph to tell whether x and y are in a proportional relationship.
a.

\boldsymbol{x}	2	4	6
\boldsymbol{y}	6	8	10

b.

x	1	2	3
y	2	4	6

The graph shows that the distance traveled by the Mars rover Curiosity is proportional to the time traveled. Interpret each plotted point in the graph.

Curiosity Rover at Top Speed
Interpret means to explain for the situation of the problem.

On Your Own:

Use a graph to tell whether x and y are in a proportional relationship.
1.

\boldsymbol{x}	1	2	3	4
\boldsymbol{y}	3	4	5	6

2.

\boldsymbol{x}	1	3	5	7
\boldsymbol{y}	0.5	1.5	2.5	3.5

Interpret each plotted point in the graph of the proportional relationship. What is the unit rate?
3. Money

Hours worked

